Analytic Solutions for a Stefan Problem with Gibbs-thomson Correction

نویسندگان

  • JOACHIM ESCHER
  • GIERI SIMONETT
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of weak solutions for the Stefan problem with anisotropic Gibbs-Thomson law

The Stefan problem with Gibbs-Thomson law describes solidification phenomena for pure substances. In applications the surface energy is anisotropic leading to an anisotropic Gibbs-Thomson law. We show the existence of weak solutions to the Stefan problem with anisotropic Gibbs-Thomson law using an implicit time discretization, and variational methods in an anisotropic BV setting. Our main resul...

متن کامل

Stability in the Stefan problem with surface tension (I)

We develop a high-order energy method to prove asymptotic stability of flat steady surfaces for the Stefan problem with surface tension also known as the Stefan problem with Gibbs-Thomson correction.

متن کامل

A study of a Stefan problem governed with space–time fractional derivatives

This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...

متن کامل

Bernoulli collocation method with residual correction for solving integral-algebraic equations

The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when ...

متن کامل

Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law

We present a finite element approximation for the one-sided Stefan problem and the one-sided Mullins–Sekerka problem, respectively. The problems feature a fully anisotropic Gibbs–Thomson law, as well as kinetic undercooling. Our approximation, which couples a parametric approximation of the moving boundary with a finite element approximation of the bulk quantities, can be shown to satisfy a sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007